Advertisement
Review Article|Articles in Press

Primary ablation versus urinary diversion in posterior urethral valve: Systematic review and meta-analysis

Published:February 22, 2023DOI:https://doi.org/10.1016/j.jpurol.2023.02.008

      Summary

      Purpose

      To determine differences in long-term kidney and bladder outcomes in boys with posterior urethral valves (PUV) managed by a primary valve ablation or primary urinary diversion.

      Materials and methods

      A systematic search was performed in March 2021. Comparative studies were evaluated according to Cochrane collaboration recommendations. Assessed measures included kidney outcomes (chronic kidney disease, end-stage renal disease, kidney function) and bladder outcomes. Odds ratios (OR) and mean difference (MD) with 95% confidence interval (CI) were extrapolated from available data for quantitative synthesis. Random-effects meta-analysis and meta-regression were performed according to study design, and potential covariates were assessed with subgroup analysis. The systematic review was prospectively registered on PROSPERO (CRD42021243967).

      Results

      Thirty unique studies describing 1547 boys with PUV were included in this synthesis. Overall effect estimates demonstrate that patients undergoing primary diversion have significantly increased odds of developing renal insufficiency [OR 0.60, 95% CI 0.44, 0.80; p < 0.001]. However, when adjusting for baseline kidney function between intervention groups, there was no significant difference in long term kidney outcomes [p = 0.09, 0.35], or the development of bladder dysfunction or requiring clean-intermittent catheterization with primary ablation rather than diversion [OR 0.89, 95% CI 0.49, 1.59; p = 0.68].

      Conclusions

      Current low-quality evidence suggests that medium-term kidney outcomes in children are similar between primary ablation and primary diversion after adjusting for baseline kidney function, while bladder outcomes are highly heterogenous. Further research with covariate control is warranted to investigate sources of heterogeneity.

      Level of evidence

      Level III.

      Keywords

      Abbreviations:

      CI (Confidence interval), CIC (Clean intermittent catheterization), ESRD (End-stage renal disease), GFR (Glomerular filtration rate), MD (Mean difference), OR (Odds ratio), PUV (Posterior urethral valve), SCr (Serum creatinine)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Pediatric Urology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krishnan A.
        • de Souza A.
        • Konijeti R.
        • Baskin L.S.
        The anatomy and embryology of posterior urethral valves.
        J Urol. 2006; 175: 1214-1220
        • McLeod D.J.
        • Szymanski K.M.
        • Gong E.
        • Granberg C.
        • Reddy P.
        • Sebastião Y.
        • et al.
        Renal replacement therapy and intermittent catheterization risk in posterior urethral valves.
        Pediatrics. 2019; 143
        • Kwong J.C.C.
        • Khondker A.
        • Kim J.K.
        • Chua M.
        • Keefe D.T.
        • Dos Santos J.
        • et al.
        Posterior Urethral Valves Outcomes Prediction (PUVOP): a machine learning tool to predict clinically relevant outcomes in boys with posterior urethral valves.
        Pediatr Nephrol. 2021; : 1-8
        • Yadav P
        • Rickard M
        • Weaver J
        • Chua M
        • Kim JK
        • Khondker A
        • et al.
        Pre-natal vs post-natal presentation of PUV: a multi-institutional experience.
        BJU Int. 2022 Sep; 130: 350-356
        • Keefe D.T.
        • Kim J.K.
        • Mackay E.
        • Chua M.
        • Van Mieghem T.
        • Yadav P.
        • et al.
        Predictive accuracy of prenatal ultrasound findings for lower urinary tract obstruction: a systematic review and Bayesian meta-analysis.
        Prenat Diagn. 2021; 41: 1039-1048
        • Matsell D.G.
        • Yu S.
        • Morrison S.J.
        Antenatal determinants of long-term kidney outcome in boys with posterior urethral valves.
        Fetal Diagn Ther. 2016; 39: 214-221
        • Lopez Pereira P.
        • Espinosa L.
        • Martinez Urrutina M.J.
        • Lobato R.
        • Navarro M.
        • Jaureguizar E.
        Posterior urethral valves: prognostic factors.
        BJU Int. 2003; 91: 687-690
        • Lopez Pereira P.
        • Urrutia M.J.
        • Jaureguizar E.
        Initial and long-term management of posterior urethral valves.
        World J Urol. 2004; 22: 418-424
        • Godbole P.
        • Wade A.
        • Mushtaq I.
        • Wilcox D.T.
        Vesicostomy vs primary ablation for posterior urethral valves: always a difference in outcome?.
        J Pediatr Urol. 2007; 3: 273-275
        • Rickard M.
        • Dos Santos J.
        • Keunen J.
        • Lorenzo A.J.
        Prenatal hydronephrosis: bridging pre-and postnatal management.
        Prenat Diagn. 2022 Aug; 42: 1081-1093
        • Nasir A.A.
        • Ameh E.A.
        • Abdur-Rahman L.O.
        • Adeniran J.O.
        • Abraham M.K.
        Posterior urethral valve.
        World J Pediatr. 2011; 7: 205-216
        • Peters C.A.
        • Bolkier M.
        • Bauer S.B.
        • Hendren W.H.
        • Colodny A.H.
        • Mandell J.
        • et al.
        The urodynamic consequences of posterior urethral valves.
        J Urol. 1990; 144: 122-126
        • Petersen K.L.
        • Moore D.P.
        • Kala U.K.
        Posterior urethral valves in South African boys: outcomes and challenges.
        S Afr Med J. 2018; 108: 667-670
        • Higgins J.
        • Thomas J.
        • Chandler J.
        • Cumpston M.
        • Li T.
        • Page M.
        • et al.
        Cochrane handbook for systematic reviews of interventions Version 6.1 (updated September 2020). Cochrane.
        2020 (Available from: TrainingCochraneOrg/Handb n.d)
        • Page M.
        • McKenzie J.
        • Bossuyt P.
        • Boutron I.
        • Hoffman T.
        • Mulrow C.
        • et al.
        The PRISMA 2020statement: an updated guideline for reporting systematic reviews.
        MetaArXiv Prepr. 2020; : 1-36
        • Belloli G.
        • Mercurella A.
        • Battaglino F.
        • Campobasso P.
        • Musi L.
        Evolution of urodynamic patterns in posterior urethral valves.
        Pediatr Surg Int. 1996; 11: 256-260
        • Belloli G.
        • Battaglino F.
        • Mercurella A.
        • Musi L.
        • D'Agostino D.
        Evolution of upper urinary tract and renal function in patients with posterior urethral valves.
        Pediatr Surg Int. 1996; 11: 339-343
        • Narasimhan K.L.
        • Chowdhary S.K.
        • Kaur B.
        • Mittal B.R.
        • Bhattacharya A.
        Factors affecting renal scarring in posterior urethral valves.
        J Pediatr Urol. 2006; 2: 569-574
        • Narasimhan K.L.
        • Kaur B.
        • Chowdhary S.K.
        • Bhalla A.K.
        Does mode of treatment affect the outcome of neonatal posterior urethral valves?.
        J Urol. 2004; 171: 2423-2426
        • Narasimhan K.L.
        • Kaur B.
        • Chowdhary S.K.
        • Bhalla A.
        • Samujh R.
        • Rao K.L.N.
        • et al.
        Prospective analysis of renal function and somatic growth in neonatal posterior urethral valves.
        Eur J Pediatr Surg. 2002; 12: 267-271
        • Sterne J.A.
        • Hernán M.A.
        • Reeves B.C.
        • Savović J.
        • Berkman N.D.
        • Viswanathan M.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; 355https://doi.org/10.1136/bmj.i4919
        • Kim S.J.
        • Jung J.
        • Lee C.
        • Park S.
        • Song S.H.
        • Won H.-S.
        • et al.
        Long-term outcomes of kidney and bladder function in patients with a posterior urethral valve.
        Medicine. 2018; 97
        • Smith G.H.H.
        • Canning D.A.
        • Schulman S.L.
        • Snyder H.M.
        • Duckett J.W.
        The long-term outcome of posterior urethral valves treated with primary valve ablation and observation.
        J Urol. 1996; 155: 1730-1734
        • Hofmann A.
        • Haider M.
        • Cox A.
        • Vauth F.
        • Rösch W.H.
        Is vesicostomy still a contemporary method of managing posterior urethral valves?.
        Children. 2022; 9: 138
        • Wu C.Q.
        • Traore E.J.
        • Patil D.
        • Blum E.
        • Cerwinka W.
        • Elmore J.
        • et al.
        Role of a preoperative catheter regimen in achieving early primary endoscopic valve ablation in neonates with posterior urethral valves.
        J Urol. 2021; 205: 1792-1797
        • Stein R.
        • Dogan H.S.
        • Hoebeke P.
        • Kočvara R.
        • Nijman R.J.M.
        • Radmayr C.
        • et al.
        Urinary tract infections in children: EAU/ESPU guidelines.
        Eur Urol. 2015; 67: 546-558
        • Alsaywid B.S.
        • Mohammed A.F.
        • Jbril S.M.
        • Bahashwan M.
        • Mukharesh L.
        • Al Khashan M.
        Renal outcome among children with posterior urethral valve: when to worry?.
        Urol Ann. 2021; 13: 30
        • Ebeid A.I.
        • Hindawy M.A.
        • Mhamoud H.H.
        • El-Guoshy F.I.
        • Galal H.
        Follow-up of 50 children after posterior urethral valve management in Al-Azhar University Hospitals.
        Ann Pediatr Surg. 2018; 14: 116-120
        • Podestá M.L.
        • Ruarte A.
        • Gargiulo C.
        • Medel R.
        • Castera R.
        Urodynamic findings in boys with posterior urethral valves after treatment with primary valve ablation or vesicostomy and delayed ablation.
        J Urol. 2000; 164: 139-144
        • Delefotrie T.
        • Ferdynus C.
        • Paye-Jaouen A.
        • Peycelon M.
        • Michel J.L.
        • Dobremez E.
        • et al.
        Nadir creatinine predicts long-term bladder function in boys with posterior urethral valves.
        J Pediatr Urol. 2022 Apr; 18
        • Denes E.D.
        • Barthold J.S.
        • Gonzalez R.
        Early prognostic value of serum creatinine levels in children with posterior urethral valves.
        J Urol. 1997; 157: 1441-1443
        • Puri A.
        • Grover V.
        • Agarwala S.
        • Mitra D.
        • Bhatnagar V.
        Initial surgical treatment as a determinant of bladder dysfunction in posterior urethral valves.
        Pediatr Surg Int. 2002; 18: 438-443
        • Eknoyan G.
        • Lameire N.
        • Eckardt K.
        • Kasiske B.
        • Wheeler D.
        • Levin A.
        • et al.
        KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney Int. 2013; 3: 5-14

      Linked Article